There are four methods that we can use to solve quadratic equations.

- a) By graphing using a pencil & paper or a graphing calculator (Sec 4.1)
- 2. By **factoring** the equation using the <u>BUM</u> method, <u>criss-cross</u> method, <u>Punnet-square</u> method, or the <u>decomposition</u> method (Sec 4.2)
- 3. By completing the square (Sec 4.3)
- 4. By using the Quadratic Formula (Sec 4.4)

In all four methods, the <u>roots of an equation</u> or the <u>zeros of a function</u> must be determined. We will use the graphing method in this section

Let's look at some properties of quadratic equations.

1. All are <u>2nd degree functions</u>, ie, the largest term in the function has an exponent of "2"

$$f(x) = y = ax^2 + bx + c$$
 (function) $ax^2 + bx + c = 0$ (equation)

- a, b, and c, are real numbers, except a $\neq 0$
- 2. When determining the zeros of a function, find the x-intercepts where the function f(x)=0
- 3. When determining the roots of an equation, find the value(s) of "x" that make the equation = 0
- 1. Quadratic Functions with one real root or one x-intercept (aka, "double" root)

Example 1: Determine the zero(s) for the function, using a graphing calculator

2. Quadratic Functions with two real roots or two x-intercepts

c)	$y = -x^2 + 3x - 2$														d) $f(x) = x^2 - x - 6$																		
				7											F			_						y							\square	\neg	_
			0										×			+																\downarrow	
	-1.5	-1 -0	.5	0 0	5	1 1	5	2 2	5	3 3	5	4 4	1.5			\pm	\pm	\exists					6									\exists	
			-1												-	+		-														+	
															-	+	+	-	_				-4								-	+	
_	_		-2	-		<u> </u>	<u> </u>		<u> </u>				-		_	-	-	_	_												\neg	\neg	
_	_					-			-			-	-			\mp	\mp	\neg					2								\exists	7	
			-3			<u> </u>			<u> </u>				-			\pm	+															\pm	_
													-																			\pm	X
	-		-4													+	Ť	3	_	-2		1		0		1		2		3		4	_
			-1												_	+	-	-														-	
															_	-	-	-						-							\neg	\neg	
			-6													\mp	+	\neg	_		_						_				\exists	7	_
																+							-								=	\mp	
			-7													\pm																\pm	
	_												-		E								-	5									
]																			

Example 2: Determine the zero(s) for the function using a graphing calculator

3. Quadratic Functions with <u>no real roots</u> or <u>no x-intercepts</u>

Example 3: Determine the zero(s) for the function using a graphing calculator

In summary, how can you recognize the number of roots/zeros given a quadratic equation? The following is only a general rule of thumb:

1. For one real root, the trinomial is a perfect square

 $x^{2} + 8x + 16 = 0 \implies (x+4)(x+4) = 0$

2. For two real roots, the trinomial is easily factorable

 $x^{2} + 3x - 10 = 0 \implies (x + 5)(x - 2) = 0$

3. For no real roots, the trinomial can't be factored

 $-x^2 - 2x - 4 = 0 \implies \infty$

Example 4: The function $h(d) = -0.04d^2 + 0.8d$ models the height of a soccer ball in h(d) meters, in terms of the horizontal distance, d meters, from where the ball was kicked on the ground.

- a) Write an equation to represent the situation when the ball lands on the ground
- b) How far does the ball travel horizontally until it first hits the ground? Use a graph to find the solution.

Homework: